# Department of Mathematical and Computational Sciences <br> National Institute of Technology Karnataka, Surathkal 

sam.nitk.ac.in
nitksam@gmail.com
Numerical Methods - MA 207

## Difference Equations

1. Convert the followind difference equations into recurrence relations (in the subscript notations).
(a) $\Delta^{3} y_{x}-3 \Delta^{2} y_{x}+2 \Delta y_{x}+y_{x}=0$
(b) $\Delta^{2} u_{x}-\Delta u_{x}+3 u_{x}=x^{2}$.
2. Find order and degree of the following difference equations.
(a) $\Delta y_{n}+y_{n}=n$
(b) $\Delta^{2} u_{x}-4 \Delta u_{x}+4 u_{x}=3^{x}$
(c) $4 y_{n+3}^{2}-2 y_{n} y_{n+1}+y_{n}^{2} y_{n+1}^{4}=0$.
3. Find order and degree of the difference equation

$$
\Delta^{3} y_{n}-3 \Delta^{2} y_{n}+2 \Delta y_{n}+y_{n}=\cos \pi n .
$$

4. Verify the following:
(a) $y_{x}=A 2^{x}+B 3^{x}$ is a solution of $y_{x+2}-5 y_{x+1}+6 y_{x}=0$.
(b) $y_{n}=1-\frac{2}{n}$ is a solution of the difference equation

$$
(n+1) y_{n+1}+n y_{n}=2 n-3 .
$$

(c) $y_{x}=2^{x}\left(c_{1}+c_{2} x\right)$ is a solution of

$$
y_{x+3}-4 y_{x+1}+4 y_{x}=0, \quad x=0,1,2, \ldots .
$$

Find the particular solution when $y_{0}=1$ and $y_{1}=6$.
5. Find the difference equation satisfied by $y=a x^{2}-b x$.
6. Form the difference equation of the lowest possible order by eliminating the constants $A$ and $B$, from

$$
y_{n}=A a^{n}+B b^{n}
$$

where $a \neq b$.
7. Form the difference equation by eliminating the constant ' $a$ ' from $y=a 3^{n}$.
8. Given $f(x)=c 3^{x}+x 3^{x-1}$, find the corresponding difference equation.
9. Given

$$
u_{x}=c_{1} 2^{x}+c_{2} 3^{x}+\frac{1}{2}
$$

find the corresponding difference equation.
10. Form the difference equations corresponding to the family of curves.
(a) $y=a x+b x^{2}$
(b) $y_{n}=a \sin n \theta+b \cos n \theta$.
11. Show that $n$ circles drawn in a plane so that each circle intersects all the others and no three circles meet in a point, divide the plane into $\left(n^{2}-n+2\right)$ parts.
12. Show that $n$ straight lines, no two of which are parallel and no three of which meet in a point, divide the plane into $\frac{1}{2}\left(n^{2}+n+2\right)$ parts.
13. Solve the following difference equations.
(a) $u_{n+3}-2 u_{n+2}-5 y_{n+1}+6 u_{n}=0$
(b) $u_{n+2}-2 u_{n+1}+u_{n}=0$
(c) $y_{n+1}-2 y_{n} \cos \alpha+y_{n-1}=0$
(d) $\left(E^{2}+E+1\right) y_{n}=0$.
14. The integers $0,1,1,2,3,5,8,13, \ldots$ are said to form a Fibonacci sequence. Form the difference equation (recurrence relation) and solve it.
15. Solve $\left(E^{3}-5 E^{2}+8 E-4\right) y_{n}=0$ given that $y_{0}=3, y_{1}=2, y_{4}=22$.
16. Solve $u_{n+2}+u_{n}=5(2)^{n}$ given $u_{0}=1, u_{1}=0$.
17. If $y_{0}=2$, solve the difference equation

$$
y_{x+1}+3 y_{x}=0, \quad x=0,1,2, \ldots .
$$

18. Solve $y_{x+1}-y_{x}=\left(x^{2}-2 x\right) 2^{x}$.
19. Solve the following difference equations:
(a) $y_{x+2}+y_{x+1}+y_{x}=x^{2}+x+1$
(b) $y_{x+2}-4 y_{x}=2^{x}$
(c) $y_{k+2}-2 y_{k+1}+5 y_{k}=4(3)^{k}-10(7)^{k}$
(d) $y_{k+2}-4 y_{k+1}+4 y_{k}=3(2)^{k}+5(4)^{k}$.
20. Solve the following difference equations:
(a) $y_{n+2}-2 \cos \alpha y_{n+1}+y_{n}=\cos \alpha n$
(b) $y_{n+2}-2 y_{n+1}+y_{n}=n^{2} 2^{n}$.
21. Solve the simultaneous difference equations

$$
u_{x+1}+v_{x}-3 u_{x}=x, \quad \text { and } \quad 3 u_{x}+v_{x+1}-5 v_{x}=4^{x}
$$

subject to the conditions $u_{1}=2, v_{1}=0$.
22. Solve the simultaneous difference equations

$$
y_{n+1}-y_{n}+2 z_{n+1}=0, \quad \text { and } \quad z_{n+1}-z_{n}=2 y_{n}=2^{n} .
$$

